Headerbild

Update:  09.05.2017

Werbung

Menue
www.schweizer-fn.de


Schallpegelberechnung

Schallpegeländerung

Entfernungsbedingte Pegelabnahme - Punktschallquelle - Theorie

Mit zunehmender Entfernung von der Schallquelle wird ein Geräusch schwächer.
Bei einer Punktschallquelle und der Annahme einer kugelförmigen Schallausbreitung ergibt sich die Abnahme des Schallpegels somit zu:

Schallpegeländerung Formel
Δ L p = Schallpegelabnahme zwischen Standort 1 und 2 (dB)
L p1 = Schallpegel am Standort 1 (dB)
L p2 = Schallpegel am Standort 2 (dB)
r 1 = Entfernung zur Schallquelle am Standort 1 (m)
r 2 = Entfernung zur Schallquelle am Standort 2 (m)
Δ L p = Schallpegelabnahme zwischen Standort 1 und 2 (dB)
L p1 = Schallpegel am Standort 1 (dB)
L p2 = Schallpegel am Standort 2 (dB)
r 1 = Entfernung zur Schallquelle am Standort 1 (m)
r 2 = Entfernung zur Schallquelle am Standort 2 (m)

Die Schallpegelabnahme bei Entfernungsverdoppelung bei einer Punktschallquelle beträgt nach der Theorie 6 dB.

Schallpegelabnahme Bild
nach oben

Entfernungsbedingte Pegelabnahme - Punktschallquelle - Praxiswert

Bei der Schallpegelabnahme im Freifeld sind weitere wesentliche Einflüsse zu berücksichtigen:
- Bodendämpfung
- Luftabsorption
- Metrologische Einflüsse (Temperatur, Wind usw.)
Um diese Einflüsse zu berücksichtigen hat sich in der Praxis gezeigt, dass mit einer Schallpegelabnahme bei Entfernungsverdoppelung von 5 dB zu rechnen ist.

Schallpegeländerung Formel
Δ L p = Schallpegelabnahme zwischen Standort 1 und 2 (dB)
L p1 = Schallpegel am Standort 1 (dB)
L p2 = Schallpegel am Standort 2 (dB)
r 1 = Entfernung zur Schallquelle am Standort 1 (m)
r 2 = Entfernung zur Schallquelle am Standort 2 (m)
Δ L p = Schallpegelabnahme zwischen Standort 1 und 2 (dB)
L p1 = Schallpegel am Standort 1 (dB)
L p2 = Schallpegel am Standort 2 (dB)
r 1 = Entfernung zur Schallquelle am Standort 1 (m)
r 2 = Entfernung zur Schallquelle am Standort 2 (m)
nach oben

Diagramm - Entfernungsbedingte Schallpegelabnahme Punktschallquelle

Die Entfernungsbedingte Pegelabnahme beträgt 5 dB(A) bei Entfernungsverdoppelung.

Schallpegelabnahme Diagramm

Beispiel:
Schallpegel von 60 dB(A) in 10 m Entfernung entspricht einem Schallpegel von 50 dB(A) in 40 m Entfernung.

nach oben

Entfernungsbedingte Pegelabnahme - Linienschallquellen

Im Gegensatz zur Punktschallquelle, bei der man von einer kugelförmigen Ausbreitung der Schallwellen ausgeht, breiten sich bei sehr langen Linienschallquellen (z. B. Eisenbahnzug, Autokolonne, Rohrleitung) die Schallwellen auf einer Zylinder-oberfläche aus.

Schallpegeländerung Linienförmig
Δ L p = Schallpegelabnahme zwischen Standort 1 und 2 (dB)
L p1 = Schallpegel am Standort 1 (dB)
L p2 = Schallpegel am Standort 2 (dB)
r 1 = Entfernung zur Schallquelle am Standort 1 (m)
r 2 = Entfernung zur Schallquelle am Standort 2 (m)
Δ L p = Schallpegelabnahme zwischen Standort 1 und 2 (dB)
L p1 = Schallpegel am Standort 1 (dB)
L p2 = Schallpegel am Standort 2 (dB)
r 1 = Entfernung zur Schallquelle am Standort 1 (m)
r 2 = Entfernung zur Schallquelle am Standort 2 (m)

Die Schallpegelabnahme bei Entfernungsverdoppelung einer Linienschallquellen beträgt 3 dB.

Schallpegelabnahme Bild
nach oben

Schallpegelerhöhung bei mehreren gleichlauten Schallquellen

Wirken mehrere Schallquellen gleicher Lautstärke nebeneinander, erhöht sich der Schalldruckpegel um folgende Werte:

gleichlaute Schallquellen Formel
L pges = Schalldruckpegel gesamt (dB)
L pi = Schalldruckpegel der Einzelquellen (dB)
n = Anzahl gleichlauter Schallquellen  
Δ L p = Schallpegelerhöhung (dB)
L pges = Schalldruckpegel gesamt (dB)
L pi = Schalldruckpegel der Einzelquellen (dB)
n = Anzahl gleichlauter Schallquellen  
Δ L p = Schallpegelerhöhung (dB)

Anzahl­ Schall­quellen 2 3 4 5 6 7 8 9 10 11 12
Schall­pegel­er­höhung (dB) 3,0 4,8 6,0 7,0 7,8 8,5 9,0 9,5 10,0 10,4 10,8



nach oben

Summenpegel von mehreren ungleichlauten Schallquellen

Bei der Ermittlung des Gesamtschallpegels von mehreren Schallquellen mit unterschiedlichen Schallpegeln ist der Schallpegel wie folgt zu ermitteln:

ungleichlaute Schallquellen Formel
L pges = Gesamtschalldruckpegel (dB)
L pi = Schalldruckpegel einer Schallquelle (dB)
n = Anzahl Schallquellen 
L pges = Gesamtschalldruckpegel (dB)
L pi = Schalldruckpegel einer Schallquelle (dB)
n = Anzahl Schallquellen 

Schallpegelerhöhung der lauteren Schallquelle , bei zwei Schallquellen mit unterschiedlichem Schallpegeln.

Schall­pegel­differenz
zweier Schall­quellen (dB)
0 1 2 3 4 5 6 7 8 9 10
Schall­pegel­erhöhung der
lauteren Schall­quelle(dB)
3,0 2,5 2,1 1,8 1,5 1,2 1,0 0,8 0,6 0,5 0,4

nach oben

Energetische Mittelwertbildung von mehreren Schallquellen

Mittelwert Schallquellen Formel
L m = Mittelwert-Schalldruckpegel (dB)
L pi = Schalldruckpegel einer Schallquelle (dB)
n = Anzahl Schallquellen 
L m = Mittelwert-Schalldruckpegel (dB)
L pi = Schalldruckpegel einer Schallquelle (dB)
n = Anzahl Schallquellen 

Zulässige Überschreitung des Mitteilungspegels bei zeitlich begrenztem Betrieb

Bei einem Schallpegel treten oftmals unterschiedliche Schallpegelwerte über einen gewissen Zeitraum auf, oder die Einwirkzeit wirkt nicht über die gesamte Tages- oder Nachtzeit. Die Schallpegel werden dann nach ihren zeitlichen Anteilen nach der Energetischen Mittelwertbildung summiert, so dass eine Pegelerhöhung für einzelne Zeitintervalle möglich ist.
Die Summe aus der zeitlichen Betrachtung darf den zulässigen Schallpegel nicht überschreiten. Die Schallpegelerhöhung ist nach Tageszeit max. 16 Std. und Nachtzeit max. 8 Std. getrennt zu betrachten.

Überschreitung Mitteilungspegels Formel
L p ges = Mitteilungspegel (dB)
L pi = Schalldruckpegel während des Zeitintervalls t i (dB)
ΔL p = Schallpegelüberschreitung (dB)
T ges = zu betrachtende Gesamtzeit (Std.)
t i = Zeitintervall für Schalldruckpegel L pi (Std).
n = Anzahl Zeitintervalle (-) 
L p ges = Mitteilungspegel (dB)
L pi = Schalldruckpegel während des Zeitintervalls t i (dB)
ΔL p = Schallpegelüberschreitung (dB)
T ges = zu betrachtende Gesamtzeit (Std.)
t i = Zeitintervall für Schalldruckpegel L pi (Std).
n = Anzahl Zeitintervalle (-) 

Überschreitung des Schallpegels bei zeitlich begrenztem Betrieb.

Zeit­inter­vall von L pi (Std.) 16 12 10 8 6 5 4 3 2 1
Über­schreitung (dB) tags 0 1 2 3 4 5 6 7 9 12
Über­schreitung (dB) nachts 0 1 2 3 4 6 9

Faustformel: Eine Halbierung (Verdoppelung) der Einwirkungszeit eines Geräusches vermindert (erhöht) seinen Mittelungspegel um ca. 3 dB.

nach oben

Störpegel

Subtraktion von Schallpegeln - Berechnung des Schallpegels ohne Störpegel

Die Subtraktion von Schallpegeln wird bei folgenden Auswertungen bzw. Berechnungen angewendet:
Messung einer Schallquelle
Bei der Messung einer Schallquelle wird ein Gesamtpegel gemessen der sich aus der zu messenden Schallquelle und einem Umgebungsgeräusch (Störpegel) ergibt. Um eine Aussage über den absoluten Schallpegel (L Nutz) der zu messenden Schallquelle machen zu können, ist die Subtraktion von Schallpegeln anzuwenden. In Abhängigkeit der Differenz zwischen Gesamt- und Störpegel ist der unten aufgeführte Korrekturpegel vom Gesamtpegel abzuziehen. Das Ergebnis ist der Schallpegel der zu messenden Schallquelle. Beträgt die Differenz zwischen Gesamt- und Störpegel mehr als 10 dB, kann die Pegelsubtraktion entfallen, da der Gesamtpegel dem Schallpegel der zu messenden Schallquelle entspricht.

Berechnung des Nutzpegels
Bei der Auslegung von Schalldämpfern ist eine zulässige Schallforderung gegeben (L ges). Sind mehrere Schallquellen zu berücksichtigen (L Stör), so kann mit der Schallpegelsubtraktion der zulässige Nutzpegel der letzten Schallquelle berechnet werden, so dass der Gesamtschallpegel nicht überschritten wird.

Nutzpegel Formel
L Stör = Störpegel (dB)
L Nutz = Nutzpegel (dB)
L ges = Gesamtschalldruckpegel (dB)
L Kor = Korrekturpegel (dB)
L Stör = Störpegel (dB)
L Nutz = Nutzpegel (dB)
L ges = Gesamtschalldruckpegel (dB)
L Kor = Korrekturpegel (dB)

Bei einer Pegeldifferenz zwischen Gesamt- und Störpegel ist folgender Korrekturschallpegel vom Gesamtschallpegel abzuziehen.

L ges - L Stör (dB) 1 2 3 4 5 6 7 8 9 10 11
L kor (dB) 6,87 4,33 3,02 2,20 1,65 1,26 0,97 0,75 0,58 0,46 0,36

Korrekturschallpegel bei Messungen mit Störpegel

Bei Schallpegelmessungen wird ein Gesamtpegel gemessen der sich aus der zu messenden Schallquelle und einem Umgebungsgeräusch (Störpegel) ergibt. Um die zu messende Schallquelle beurteilen zu können, ist der der unten dargestellte Korrekturschallpegel vom Gesamtpegel zu Subtraktieren. Beträgt die Differenz zwischen Nutzpegel und Störpegel mehr als 10 dB, kann die Pegelsubtraktion entfallen. L ges = Gesamtschallpegel (dB)  -  L Stör = Störpegel (dB)  -  L Kor = Korrekturschallpegel (dB) L Mess = Messpegel der zu messenden Schallquelle (dB)  -  L Mess = L ges - L Kor

Korrekturschallpegel Diagramm

Beispiel:
L ges = Gesamtschallpegel = 60 (dB)
L Stör = Störpegel = 56 (dB)
Differenz L ges - L Stör = 60 - 56 = 4 (dB)
L Kor = Korrekturschallpegel nach Diagramm = 2,2 (dB)
L Mess = Messpegel der zu messenden Schallquelle (dB)  -  L Mess = L ges - L Kor = 60 - 2,2 = 57,8 (dB)

nach oben

Die Bezugswerte sind die Hörschwelle für das menschliche Gehör, sie entsprechen einem Schalldruckpegel von 0 dB.



Schalldruckpegel

Eine der zentralen Größen in der Akustik ist der Schalldruckpegel, der zur Beschreibung der Lautstärke benötigt wird.
Dieser ist als logarithmisches Maß für das Verhältnis zwischen dem gemessenen Schalldruck und einem Bezugsschalldruck definiert.

Schalldruck
Schalldruck
Bezugs-Schalldruck
Bezugs-Schalldruck
Schalldruckpegel
Schalldruckpegel
p = Schalldruck (Pa)
p 0 = Bezugs-Schalldruck (Pa)
L p = Schalldruckpegel (dB)
p = Schalldruck (Pa)
p 0 = Bezugs-Schalldruck (Pa)
L p = Schalldruckpegel (dB)
nach oben

Schallintensitätspegel

Die Schallintensität, die zu den Schallenergiegrößen gehört, bezeichnet die Schallleistung, die je Flächeneinheit durch eine durchschallte Fläche tritt.
Die zugehörige logarithmische Größe ist der Schallintensitätspegel.
Zwei inkohärente Schallquellen ergeben eine Schallintensitätspegel-Zunahme um 3 dB gegenüber einer Schallquelle.

Schallintensität
Schallintensität
Bezugs-Schallintensität
Bezugs-Schallintensität
Schallintensitätspegel
Schallintensitätspegel
I = Schallintensität (W/m²)
I 0 = Bezugs-Schallintensität (W/m²)
L I = Schallintensitätspegel (dB)
I = Schallintensität (W/m²)
I 0 = Bezugs-Schallintensität (W/m²)
L I = Schallintensitätspegel (dB)

Schallschnellepegel

Die Schallschnelle v ist die zeitliche Ableitung der Schallauslenkung. Im Schallfeld ist sie eine vektorielle Größe. Sie gibt die Wechselgeschwindigkeit des schwingenden Teilchens im Medium an. Im europäischen Raum wird für die Schallschnelle ein Bezugswert v0 = 5·10-8 m/s beim Schalldruck von 20 µPa verwendet.
Die Schallschnelle in Luft bei einem Schalldruck von 0,1 Pa gleich einem Schalldruckpegel von 74 dB errechnet sich zu 0,25 mm/s, wobei die Schallgeschwindigkeit rund 340 m/s beträgt.

Schallschnelle
Schallschnelle
Bezugs-Schallschnelle
Bezugs-Schallschnelle
Schallschnellepegel
Schallschnellepegel
ν = Schallschnelle (m/s)
ν 0 = Bezugs-Schallschnelle (m/s)
L ν = Schallschnellepegel (dB)
ν = Schallschnelle (m/s)
ν 0 = Bezugs-Schallschnelle (m/s)
L ν = Schallschnellepegel (dB)
nach oben

Schallenergie

Die Schallenergie ist als Schallenergiegröße die Summe der in einem Schallfeld enthaltenen potentiellen und kinetischen Energie.
Die Schallwellen transportieren die Schallenergie von der Schallquelle weg in den umgebenden Raum. Die gesamte Energie, die von einer Schallquelle innerhalb von einer Sekunde abgestrahlt wird, heißt Schallleistung, die in Watt gemessen wird,

Schallenergie
Schallenergie
Bezugs-Schallenergie
Bezugs-Schallenergie
Schallenergiepegel
Schallenergiepegel
W = Schallenergie (J)
W 0 = Bezugs-Schallenergie (J)
L W = Schallenergiepegel (dB)
W = Schallenergie (J)
W 0 = Bezugs-Schallenergie (J)
L W = Schallenergiepegel (dB)


Schallenergiedichte

Die Schallenergiedichte (Formelzeichen E oder w) ist ein Maß zur Beschreibung der an einem bestimmten Ort des Schallfelds vorhandenen Schallenergie.
Sie ist eine Schallenergiegröße. Die zugehörige logarithmische Größe ist der Schallenergiedichtepegel.

Schallenergiedichte
Schallenergiedichte
Bezugs-Schallenergiedichte
Bezugs-Schallenergiedichte
Schallenergiedichtepegel
Schallenergiedichtepegel
W = Schallenergiedichte (J/m³)
W 0 = Bezugs-Schallenergiedichte (J/m³)
L W = Schallenergiedichtepegel (dB)
W = Schallenergiedichte (J/m³)
W 0 = Bezugs-Schallenergiedichte (J/m³)
L W = Schallenergiedichtepegel (dB)
nach oben

Frequenz

Die Frequenz f bezeichnet die Anzahl der Schwingungen pro Sekunde, stellt also eine Wiederholungshäufigkeit dar (Hertz: Hz = Schwingung/s).

Frequenz
f = Frequenz (1/s - Hz)
T = Periodendauer (s)

Infraschall < 16 Hz nicht hörbar
Hörschall von 16 Hz bis 20 kHz hörbar
Ultraschall von 20 kHz bis 1,6 GHz nicht hörbar
Hyperschall > 1 GHz nicht hörbar
f = Frequenz (1/s - Hz)
T = Periodendauer (s)

Infraschall < 16 Hz nicht hörbar
Hörschall von 16 Hz bis 20 kHz hörbar
Ultraschall von 20 kHz bis 1,6 GHz nicht hörbar
Hyperschall > 1 GHz nicht hörbar

Wellenlänge

Die Wellenlänge λ ist in einer sich ausbreitenden Welle der Abstand zwischen zwei aufeinander folgenden Punkten des gleichen Schwingungszustandes, also z. B. zwischen zwei Maxima oder zwei Minima.
Eine Periode ist die zeitliche Dauer eines vollständigen Bewegungszyklus, nach dem wieder der gleiche Bewegungszustand erreicht wird.

Wellenlänge
Wellenlänge
Periodendauer
Periodendauer
λ = Wellenlänge (m)
c = Schallgeschwindigkeit (m/s)
f = Frequenz (1/s - Hz)
T = Periodendauer (s)
λ = Wellenlänge (m)
c = Schallgeschwindigkeit (m/s)
f = Frequenz (1/s - Hz)
T = Periodendauer (s)
nach oben

Schallgeschwindigkeit

Die Schallgeschwindigkeit ist die Geschwindigkeit, mit der sich eine Schallwelle ausbreitet, sie ist abhängig von Art und Zustand des Mediums.

Luft
Schallgeschwindigkeit
Schallgeschwindigkeit
Näherungsformel
Schallgeschwindigkeit
Ideale Gase
Schallgeschwindigkeit
Flüssigkeiten
Schallgeschwindigkeit
Feststoffe
Schallgeschwindigkeit

c = Schallgeschwindigkeit (m/s)
κ = Adiabatenexponent (-) - Luft=1,4
R   = Gaskonstante (J/(kg*K) - Luft=287
T   = Absoluttemperatur (K)
p = Gasdruck (Pa)
t = Temperatur (°C)
ρ = Dichte (kg/m³)
M = Molare Masse (kg/mol)
K = Kompressionsmoduls (Pa)
c log = Longitudinale Schallgeschwindigkeit (m/s)
c trans = Transversale Schallgeschwindigkeit (m/s)
E = Elastizitätsmodul (N/m²) (°C)
ν = Poissonzahl (-)
Schallgeschwindigkeit verschiedener Stoffe
c = Schallgeschwindigkeit (m/s)
κ = Adiabatenexponent (-) - Luft=1,4
R   = Gaskonstante (J/(kg*K) - Luft=287
T   = Absoluttemperatur (K)
p = Gasdruck (Pa)
t = Temperatur (°C)
ρ = Dichte (kg/m³)
M = Molare Masse (kg/mol)
K = Kompressionsmoduls (Pa)
c log = Longitudinale Schallgeschwindigkeit (m/s)
c trans = Transversale Schallgeschwindigkeit (m/s)
E = Elastizitätsmodul (N/m²) (°C)
ν = Poissonzahl (-)
Schallgeschwindigkeit verschiedener Stoffe
nach oben

Einfügungsdämmmaß eines Schalldämpfers

Das Einfügungsdämmmaß De ist die durch Vergleichsmessung mit und ohne Schalldämpfer ermittelte Pegelminderung.

Einfügungsdämmmaß Formel
D e = Einfügungsdämmmaß (dB) 
L po = Schalldruckpegel ohne Schalldämpfer (dB)
L pm = Schalldruckpegel mit Schalldämpfer (dB)
D e = Einfügungsdämmmaß (dB) 
L po = Schalldruckpegel ohne Schalldämpfer (dB)
L pm = Schalldruckpegel mit Schalldämpfer (dB)


Beurteilungspegel

Der Beurteilungspegel ist auf einen Bezugszeitraum (z.B. Tag oder Nacht) umgerechneter mittlerer Schallpegel, bei dem durch Pegelkorrekturen einzelne Besonderheiten der Geräusche (Tonhaltigkeit, Impulshaltigkeit) zusätzlich berücksichtigt werden können. Treten während einer Beurteilungszeit unterschiedliche Emissionen auf oder sind unterschiedliche Zuschläge für Ton- und Impulshaltigkeit oder Tageszeiten mit erhöhter Empfindlichkeit erforderlich, so ist zur Ermittlung der Geräuschimmission während der gesamten Beurteilungszeit diese in geeigneter Weise in Teilzeiten T j aufzuteilen, in denen die Emissionen im Wesentlichen gleichartig und die Zuschläge konstant sind. Der Beurteilungspegel wird für die Beurteilungszeiten tags und nachts getrennt ermittelt.

Beurteilungspegel Formel
L r = Beurteilungspegel (dB)
T r = tags 16 Std. nachts 8 oder 1 Std.
T j = Teilzeit j (Std.)
N = Anzahl der gewählten Teilzeiten 
L Aeq,j = Mittelungspegel während der Teilzeit Tj (dB)
C met = meteorologische Korrektur (dB)
K T,j = Zuschlag für Ton- und Informationshaltigkeit in der Teilzeit Tj (dB)
K I,j = Zuschlag für Impulshaltigkeit in der Teilzeit Tj (dB)
K R,j = Zuschlag für Tageszeiten mit erhöhter Empfindlichkeit in der Teilzeit Tj (dB)
nach oben

Strömungsrauschen in Luftkanälen nach VDI 2081

Bei der Durchströmung von Luft in Rohrleitungen treten Strömungsgeräusche auf, die Abhängig sind von der Strömungsgeschwindigkeit, von dem Querschnitt des Kanals und dem Turbulenzgrad. Die nachfolgenden Formeln können nur als Näherungswerte angesehen werden, da fertigungstechnische Einflüsse einen großen Einfluss auf das Strömungsrauschen nehmen.
Das Strömungsrauschen sollte ca. 10 dB niedriger liegen als der Hauptschallpegel, da andernfalls sich der Hauptschallpegel erhöht.
In der Literatur werden unterschiedliche Formeln für das Strömungsrauschen genannt die nachfolgend aufgeführt werden.

Strömungsrauschen VDI Formel
L w = Schallleistungspegel Strömungsrauschen (dB)
v = Strömungsgeschwindigkeit (m/s) 
A = Rohrquerschnitt (m²)  
L w = Schallleistungspegel Strömungsrauschen (dB)
v = Strömungsgeschwindigkeit (m/s) 
A = Rohrquerschnitt (m²)  
nach oben

Strömungsrauschen in Abgasleitungen

Strömungsrauschen Abgasleitung Formel
L w = Schallleistungspegel Strömungsrauschen (dB)
v = Strömungsgeschwindigkeit (m/s) 
A = Rohrquerschnitt (m²)  
L w = Schallleistungspegel Strömungsrauschen (dB)
v = Strömungsgeschwindigkeit (m/s) 
A = Rohrquerschnitt (m²)  

Änderung des Strömungsrauschens bei Änderung des Volumenstroms

Strömungsrauschen Volumenstromänderung Formel
Δ L w = Änderung Schallleistungspegel Strömungsrauschen (dB)
V 1 = Ausgangs Volumenstrom (m³/s)
V 2 = geänderter Volumenstrom (m³/s)
Δ L w = Änderung Schallleistungspegel Strömungsrauschen (dB)
V 1 = Ausgangs Volumenstrom (m³/s)
V 2 = geänderter Volumenstrom (m³/s)

Volumenstromänderung der Luft bei Temperaturänderung

Volumenstromänderung bei Temperatur - Formel
Δ V = Volumenstromänderung der Luft (m³/s) 
V 0 = Ausgangs Volumenstrom (m³/s)
T 1 = Ausgangs Temperatur (K)
T 2 = geänderte Temperatur (K)
Δ V = Volumenstromänderung der Luft (m³/s) 
V 0 = Ausgangs Volumenstrom (m³/s)
T 1 = Ausgangs Temperatur (K)
T 2 = geänderte Temperatur (K)

Oktavspektrum des Strömungsrauschens in Leitungen

Die Verteilung der Schallleistungspegel über die Oktavfrequenzen kann Näherungsweise nach folgendem Diagramm bestimmt werden. Dort sind auf der Abszisse, aus Oktav-Mittenfrequenz und Strömungsgeschwindigkeit, die jeweiligen Korrekturwerte aufgetragen. Diese sind zum oben ermittelten Gesamt-Schallleistungspegel zu addieren. Diese Zuordnung ist als Näherungswert zu betrachten. Oktavverteilung Strömungsrauschen - Diagramm

Oktavverteilung Korrekturfaktor - Formel
L w Okt = Oktav-Schallleistungspegel Strömungsrauschen (dB)
L w = Schallleistungspegel Strömungsrauschen (dB) − Gesamtwert s. oben
ΔL w = Korrekturwert für Oktav-Schallleistungspegel (dB)
L w Okt = Oktav-Schallleistungspegel Strömungsrauschen (dB)
L w = Schallleistungspegel Strömungsrauschen (dB) − Gesamtwert s. oben
ΔL w = Korrekturwert für Oktav-Schallleistungspegel (dB)
nach oben

Gesamtschallpegel

Berechnung des mittleren Gesamtschallpegels, aus den einzelnen Schallpegelwerten der einzelnen Frequenzen.

Gesamtschallpegel Formel
L pg = Gesamtschalldruckpegel (dB)
L p = Schalldruckpegel der einzelnen Frequenzen (dB)
n = Anzahl der Frequenzen 
L pg = Gesamtschalldruckpegel (dB)
L p = Schalldruckpegel der einzelnen Frequenzen (dB)
n = Anzahl der Frequenzen 


nach oben

Bewertungsfaktoren von Schallpegeln

Um die Lautstärkeempfindlichkeit des Menschen zu berücksichtigen, werden die Messwerte bei den einzelnen Frequenzen mit Bewertungsfaktoren beaufschlagt. Diese Werte entsprechen dem Empfinden des menschlichen Gehörs.
Die wichtigsten Bewertungsfaktoren sind die sogenannten A-Frequenzbewertungsfaktoren.

Schallpegel-Bewertungsfaktoren
L pA = Schalldruck mit Bewertung (dB(A))
L p = Schalldruckpegel ohne Bewertung (dB)
BF = Bewertungsfaktor (dB) 
L pA = Schalldruck mit Bewertung (dB(A))
L p = Schalldruckpegel ohne Bewertung (dB)
BF = Bewertungsfaktor (dB) 

Bewertungsfaktoren

Bewertungsfaktoren bei den einzelnen Frequenzen:

Frequenz (Hz) 31,5 63 125 250 500 1000 2000 4000 8000 16000
A - Bewertung (dB) -39,52 -26,21 -16,18 -8,67 -3,25 0,00 1,20 0,96 -1,15 -6,71
B - Bewertung (dB) -17,12 -9,36 -4,23 -1,36 -0,28 0,00 -0,09 -0,72 -2,94 -8,53
C - Bewertung (dB) -3,03 -0,82 -0,17 0,00 0,03 0,00 -0,17 -0,83 -3,05 -8,64
nach oben

Berechnung der Bewertungskurven A, B und C von Schallpegeln in Abhängigkeit der Frequenz

Um der Tatsache Rechnung zu tragen, dass das menschliche Ohr Töne mit gleichem Schalldruck in unterschiedlichen Tonhöhen unterschiedlich laut empfindet, werden so genannte Frequenzbewertungskurven verwendet.
Da die Krümmung der Kurven gleicher Lautstärkepegel und damit der Frequenzgang des Gehörs vom Schalldruckpegel abhängig ist, wurden für unterschiedlich hohe Schalldruckpegel unterschiedliche Bewertungskurven definiert:
A-Bewertung: Entspricht den Kurven gleicher Lautstärkepegel bei ca. 20-40 phon
B-Bewertung: Entspricht den Kurven gleicher Lautstärkepegel bei ca. 50-70 phon
C-Bewertung: Entspricht den Kurven gleicher Lautstärkepegel bei ca. 80-90 phon
Bewertete Pegel werden durch den entsprechenden Buchstaben der Frequenzbewertung als Index der Messgröße gekennzeichnet.

Schallpegel-Bewertungsfaktoren
A (f) = A-Bewertungsfaktor (dB)
B (f) = B-Bewertungsfaktor (dB)
C (f) = C-Bewertungsfaktor (dB)
f = Frequenz (Hz) 
Berechnungsprogramm
nach oben

Oktav- und Terzbandfrequenzen

Bei der Breite der Frequenzbänder verhält sich die obere Grenzfrequenz des Spektrums zur unteren Grenzfrequenz wie folgt:

Oktav- und Terzbandfrequenzen
f o = obere Grenzfrequenz (Hz)
f u = untere Grenzfrequenz (Hz)
f o = obere Grenzfrequenz (Hz)
f u = untere Grenzfrequenz (Hz)

Frequenzwerte für Terz- und Oktavband:

Oktave 31,5 63 125 250
Terz 25 31,5 40 50 63 80 100 125 160 200 250 315
Oktave 500 1000 2000 4000
Terz 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000
Oktave 8000 16000
Terz 6300 8000 10000 12500 16000 20000

Umrechnung von Terz- in Oktavspektren

Der Schalldruckpegel für das Oktavspektrum ist aus dem Pegel auf der Oktavfrequenz und dem links und rechts liegenden Pegel der Terzfrequenz zu ermitteln.

Terz- in Oktavband umrechnen Formel
L okt = Schalldruckpegel Oktavspektrum (dB)
L Terz = Schalldruckpegel Terzspektrum (dB)
L okt = Schalldruckpegel Oktavspektrum (dB)
L Terz = Schalldruckpegel Terzspektrum (dB)

Eine Berechnung von Oktav- in Terzwerte ist nicht möglich.

nach oben